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Abstract. Optimization problems depending on a probability measure correspond very
often to economic situations. Since the probability measure is there very often completely
unknown, statistical estimates (based on date) have to replace mostly the unknown prob-
ability measure to obtain at least an approximate solution and an approximate optimal
value. Properties of such statistical estimates have been investigated many times in the
case of linear dependence of an objective function on the probability measure. However,
this assumption is not fulfilled just in many economic models, see e.g. Markowitz model
or some risk measures. We try to cover some of these complicated cases.
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1. INTRODUCTION

Let (Ω, S, P ) be a probability space; ξ (:= ξ(ω) = [ξ1(ω), . . . , ξs(ω)]) an s–dimensional
random vector defined on (Ω, S, P ); F (:= F (z), z ∈ Rs) the distribution function of ξ;
Fi, i = 1, . . . , s one–dimensional marginal distribution functions corresponding to F ;
PF , Z(:= ZF ) the probability measure and support corresponding to F. Let, moreover,
g0(:= g0(x, z)) be a real–valued (say continuous) function defined on Rn×Rs; X ⊂ Rn be
a nonempty “deterministic” set. If the symbol EF denotes the operator of mathematical
expectation corresponding to F, then many economic applications correspond to a class
of stochastic optimization problems that can be introduced in the form:

Find
ϕ(F ) = inf{EFg0(x, ξ)|x ∈ X}. (1)

In applications very often the “underlying” probability measure PF has to be replaced
by empirical one; evidently, then the solution is sought w.r.t. the “empirical problem”:

Find
ϕ(FN) = inf{EFNg0(x, ξ)|x ∈ X}, (2)

where FN denotes an empirical distribution function determined by (mostly) an indepen-
dent random sample {ξi}Ni=1 corresponding to the distribution function F. If X (F ), X (FN)
denote the optimal solution sets of the problems (1) and (2), then under rather general
assumptions ϕ(FN), X (FN) are “good” stochastic estimates of ϕ(F ), X (F ) (see e.g. [2],
[5], [6], [8], [12], [15], [16], [17], [18], [19]). There were introduced assumptions guaranteing
the consistency, asymptotic normality and convergence rate. Especially, it means in the
last case that there were introduced assumptions under which

P{ω : Nβ|ϕ(F )− ϕ(FN)| > t} −→(N−→∞) 0 for t > 0, β ∈ (0,
1

2
). (3)



To obtain this relation the Hoeffding inequality (see e.g. [4], [6]), large deviation (see e.g.
[5]), Talagrand approach (see e.g. [13]) and the stability results (see e.g. [10]) have been
employed. Furthermore, let us consider a simple “underlying” classical portfolio problem:

Find

max
n∑

k=1

ξkxk s.t.
n∑

k=1

xk ≤ 1, xk ≥ 0, k = 1, . . . , n, s = n, (4)

where xk is a fraction of the unit wealth invested in the asset k, ξk denotes the return
of the asset k ∈ {1, 2, . . . n}. If ξk, k = 1, . . . , n are known, then (4) is a linear program-
ming problem. However, ξk, k = 1, . . . , n are mostly random variables with unknown
realizations in a time decision. If we denote

µk = EF ξk, ck,j = EF (ξk − µk)(ξj − µj), k, j = 1, . . . n, (5)

then it is reasonable to set to the portfolio selection two–objective optimization problem:

Find

max
n∑

k=1

µkxk, min
n∑

k=1

n∑

j=1

xkck,jxj s. t.
n∑

k=1

xk ≤ 1, xk ≥ 0, k = 1, . . . , n. (6)

Evidently, there exists only rarely a possibility to find an optimal solution simultaneously
with respect to the both criteria. Markowitz suggested (see e.g. [3]) to replace the prob-
lem (6) by one–criterion optimization problem of the form:

Find

ϕM(F ) = max{
n∑

k=1

µkxk−K
n∑

k=1

n∑

j=1

xkck,jxj} s. t.
n∑

k=1

xk ≤ 1, xk ≥ 0, k = 1, . . . , n,

(7)
where K ≥ 0 is a constant. Obviously, for every K ≥ 0 there exists λ ∈ 〈0, 1〉 such that
the problem (7) is equivalent to the following one:

Find

ϕλ(F ) = max{λ
n∑

k=1

µkxk− (1−λ)
n∑

k=1

n∑

j=1

xkck,jxj} s. t.
n∑

k=1

xk ≤ 1, xk ≥ 0, k = 1, . . . , n.

(8)
Evidently,

σ2(x) =
n∑

k=1

n∑

j=1

xkck,jxj = EF{
n∑

j=1

ξjxj − EF [
n∑

j=1

ξjxj]}2, x = (x1, . . . , xn)

can be considered as a risk measure, that can be replaced by

σ(x) =

√√√√EF{
n∑

j=1

ξjxj − EF [
n∑

j=1

ξjxj]}2 , x = (x1, . . . , xn). (9)

For more details, see e.g. [1], where an analysis of the corresponding relationship (accord-
ing to multiobjective optimization theory) is introduced. Konno and Yamazaki introduced
in [11] another risk measure w(x) by

w(x) = EF |
n∑

k=1

ξkxk − EF [
n∑

k=1

ξkxk]|. (10)



Moreover, they have proven that w(x) =
√

2
π
σ(x) in the case of mutually normally

distributed random vector ξ = (ξ1, . . . , ξn).

Evidently, EF |
n∑
k=1

ξkxk−y | is a Lipschitz function of y, as well as the objective function

[λ
n∑
k=1

µkxk + (1 − λ)w(x)], λ ∈ 〈0, 1〉 is a Lipschitz function of y := EF [
n∑
k=1

ξkxk]. Some

others risk measures fulfilling the Lipschitz property can be found e.g. in [14].

To introduce more general problems covering (10), let h(x, z) = (h1(x, z), . . . , hm1(x, z))
be m1–dimensional vector function defined on Rn ×Rs, g1

0(x, z, y) be a function defined
on Rn × Rs × Rm1 . According to this new situation we replace the problem (1) by a
stochastic programming problem in the form:

Find
ϕ(F ) := ϕ1(F ) = inf{EFg1

0(x, ξ,EFh(x, ξ))|x ∈ X}. (11)

2. PROBLEM ANALYSIS

To investigate the empirical estimates of the problem (11), evidently, we can employ
the assertion introduced in [10].

Lemma 1. [10] Let G be an arbitrary s dimensional distribution function. If

1. g1
0(x, z, y) is for every x ∈ X, z ∈ Rs a Lipschitz function of y ∈ Y with a Lipschitz

constant Ly(x, z); where Y = {y ∈ Rm1 : y = h(x, z) for some x ∈ X, z ∈ Rs},
2. for every x ∈ X, y ∈ Y there exist finite mathematical expectations

EFL
y(x, ξ), EFh(x, ξ), EGh(x, ξ),

EFg
1
0(x, ξ, EFh(x, ξ)), EFg

1
0(x, ξ, EGh(x, ξ)), EGg

1
0(x, ξ, EGh(x, ξ)),

then for every x ∈ X it holds that

|EFg1
0(x, ξ, EFh(x, ξ))− EGg

1
0(x, ξ, EGh(x, ξ))| ≤

EFL
y(x, ξ) ||EFh(x, ξ)− EGh(x, ξ)‖2

m1
+

|EFg1
0(x, ξ, EGh(x, ξ))− EGg

1
0(x, ξ, EGh(x, ξ))|.

(12)

(‖ · ‖2
m1

denotes the Euclidean norm in Rm1 .)

Consequently, the assumptions guaranteeing the relation (3) can be employed in this case
to obtain new results (for the problem (11)). However, the classical Markowitz problem
(7) is not covered by the problem (11). A special case (dealing with the Markowitz model)
has been considered in [9]. To recall this assertion we denote by the symbol C(:= C(n×n))
the matrix with elements ck, j, k, j = 1, . . . , n defined by relation (5). Furthermore, we
denote by the symbols x(F ), x(FN) the solutions of the problem (7) and the correspond-
ing empirical problem.



Proposition 1. Let ZF , X be compact sets, t > 0, {ξi}Ni=1 independent random sample,
N = 1, 2, . . . , β ∈ (0, 1

2
), then

P{ω : Nβ|ϕM(F )− ϕM(FN)| > t} −→(N−→∞) 0.

If, moreover M > 0 and the matrix C is positive definite, then also

P{ω : Nβ‖x(FN)− x(F )‖2 > t} −→(N−→∞) 0.

Proof. The assertion of Proposition 1 follows immediately from Theorem 3 [9]. 2

3. SOME AUXILIARY ASSERTIONS

In this section we prove some auxiliary assertion. To this end we consider s = 2 and
set ξ1 := ξ̄, ξ2 := η̄, where ξ̄(:= ξ̄(ω)), η̄(:= η̄(ω)) are random valuables defined on
(Ω, S, P ) with finite second moments. If we denote by the symbols F (:= F(ξ̄, η̄)), Fξ̄, Fη̄
the distribution functions of the random vector (ξ̄, η̄) and marginal distribution functions
of the random valuables ξ̄ and η̄, then

|EF [(ξ̄ − EF ξ̄)(η̄ − EF η̄)]− EFN [(ξ̄ − EFN ξ̄)(η̄ − EFN η̄)]| ≤
|EF ξ̄η̄ − EFN ξ̄η̄| + |EF ξ̄EF η̄ − EF ξ̄EFN η̄| + |EF ξ̄EFN η̄ − EFN ξ̄EFN η̄| ≤

|EF ξ̄η̄ − EFN ξ̄η̄| + |EF ξ̄| |EF η̄ − EFN η̄| + |EFN η̄| |EF ξ̄ − EFN ξ̄|.
(13)

Consequently for t > 0

P{ω : Nβ|EF [(ξ̄ − EF ξ̄)(η̄ − EF η̄)]− EFN [(ξ̄ − EFN ξ̄)(η̄ − EFN η̄)]| ≥ t} ≤
P{ω : Nβ|EF ξ̄η̄ − EFN ξ̄η̄| > t

3
} + P{ω : Nβ|EF ξ̄| |EF η̄ − EFN η̄| > t

3
}+

P{ω : Nβ|EFN η̄||EF ξ̄ − EFN ξ̄| > t
3
}.

(14)

If we set ΩN
1 (t) = {ω : |EFN η̄ − FF η̄| <

√
t}, ΩN, c

1 (t) = Ω − ΩN
1 and assume (without

loss of generality) that EFη̄ η̄ > 0, then

P{ω : Nβ|EFN η̄||EF ξ̄ − EFN ξ̄| > t
3
} = P{ω : Nβ|EFN η̄||EF ξ̄ − EFN ξ̄| > t

3

⋂
ΩN

1 (t)}+

P{ω : Nβ|EFN η̄||EF ξ̄ − EFN ξ̄| > t
3

⋂
ΩN, c

1 (t)} ≤

P{ω : Nβ(
√
t+ EF η̄)|EF ξ̄ − EFN ξ̄| > t

3

⋂
ΩN

1 (t)} + P{ω : ΩN, c
1 (t)} ≤

P{ω : Nβ|EF ξ̄ − EFN ξ̄| > t
3(
√
t+EF η̄))

} + P{ω : Nβ|EFN η̄ − FF η̄| >
√
t}.

(15)
Lemma 2. Let ζ̄ = ξ̄η̄ (:= ξ̄(ω)η̄(ω)). Let moreover Fζ̄ denote the distribution function
of ζ̄ . If

1. PFξ̄ , PFη̄ are absolutely continuous with respect to the Lebesgue measure on R1 (we
denote by fξ̄, fη̄ the probability densities corresponding to Fξ̄, Fη̄),



2. there exist constants C ξ̄
1 , C

ξ̄
2 , C

η̄
1 , C

η̄
2 > 0 and T > 0 such that

fξ̄(z) ≤ C ξ̄
1 exp{−C ξ̄

2 |z|} for z ∈ (−∞, −T )
⋃

(T, ∞),

fη̄(z) ≤ C η̄
1 exp{−C η̄

2 |z|} for z ∈ (−∞, −T )
⋃

(T, ∞),

then, there exist constants C ζ̄
1 , C

ζ̄
2 > 0, T̄ > 1 such that for z > T̄

Fζ̄(−z) ≤ C ζ̄
1

C ζ̄
2

exp{−C ζ̄
2

√
z}, (1− Fζ̄) ≤

C ζ̄
1

C ζ̄
2

exp{−C ζ̄
2

√
z}.

Proof. First, evidently, for z > T

Fξ̄(−z) ≤ C ξ̄1

C ξ̄2
exp{−C ξ̄

2z}, 1− Fξ̄(z) ≤ C ξ̄1

C ξ̄2
exp{−C ξ̄

2z},
Fη̄(−z) ≤ C ξ̄1

Cη̄2
exp{−C η̄

2 z}, 1− Fη̄(z) ≤ Cη̄1
Cη̄2

exp{−C η̄
2 z}.

Consequently, if ξ̄(ω) = η̄(ω) a.s., then

P{ω : ζ̄ < −z} = 0, P{ω : ζ̄ > z} = P{ω : |ξ̄| > √z} = 2
C ξ̄

1

C ξ̄
2

exp{−C2

√
z},

if ξ̄(ω) 6= η̄(ω), then evidently for z > 1

P{ω : ζ̄ > z} = P{ω : ξ̄η̄ > z} ≤
P{ω : ξ̄η̄ > z; |ξ̄| > √z}+ P{ω : ξ̄η̄ > z; |η̄| > √z} ≤

P{ω : |ξ̄| > √z}+ P{ω : |η̄| > √z} ≤ 2
C ξ̄1

C ξ̄2
exp{−C ξ̄

2

√
z} + 2

Cη̄1
Cη̄2

exp{−C η̄
2

√
z}.

Evidently, the assertion of Lemma 2 is valid. 2

Furthermore, it follows from Lemma 2 that for z > T̄ there exist D1, D2, D3 such that

+∞∫

z

(1− Fζ̄(u))du ≤ D1

√
ze−D2

√
z +D3e

−D2
√
z. (16)

4. CONVERGENCE RATE

To introduce more general assertion dealing with the Markowitz problem we employ
an approach employing in [10].

Theorem. Let X be a compact set. Let, moreover, {ξi}Ni=1 be an independent random
sample corresponding to the distribution function F, N = 1, 2, . . . . If



1. PFi , i = 1, . . . , n are absolutely continuous with respect to the Lebesgue measure
on R1 (we denote by fi probability densities corresponding to PFi),

2. there exist constants Ci
1, C

i
2 > 0 and T > 0 such that

fi(z) ≤ Ci
1 exp{−Ci

2z} for z ∈ (−∞, −T )
⋃

(T, ∞), i = 1, . . . , n,

then for t > 0, β ∈ (0, 1
2
)

P{ω : Nβ|ϕM(F )− ϕM(FN)| > t} −→(N−→∞) 0.

If, moreover M > 0 and the matrix C is positive definite, then also

P{ω : Nβ‖x(FN)− x(F )‖2 > t} −→(N−→∞) 0.

Proof. Employing the relations (14), (15), (16), the assertion of Lemma 2 and the
technique employed in [10] we obtain the assertion of Theorem. 2
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[2] DUPAČOVÁ, J., WETS, R. J.-B.: Asymptotic Behaviour of Statistical Estimates
and Optimal Solutions of Stochastic Optimization Problems. Ann. Statist. (1984),
16, 1517–1549.
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